A Private Key Recovery Scheme
Using Partial Knowledge

Har Preet Singh
FIWARE Foundation
Berlin, Germany
harpreet.singh @fiware.org

Abstract—In this paper we explore the problem of secure
handling of private keys in blockchain applications. We present
a novel approach, named ‘Partial Knowledge Recovery Scheme”
(PKRS), which allows for the recovery of an encrypted private
key through the use of personal security questions.

In PKRS, an individual is asked a set of questions, and the
answers to those questions are used to encrypt the input and
produce a secured private key. Through the use of Shamir’s secret
sharing algorithm, the original private key can be recovered if
the individual can answer correctly only a subset of the original
questions. PKRS does not require any external services for the
recovery process, since all the required information is stored
within the secured private key itself.

This approach tries to achieve a middle ground between
security and usability. Security, where the private key needs to be
encrypted and safely stored offline. Usability, where an individual
wants to be able to recover their private key without the need
of an easily forgotten passphrase and be able to store it in their
personal cloud environments.

We also discuss the correct design of personal security ques-
tions in social environments where an individual’s personal data
can be mined through public records and social networks. Finally,
we present a blockchain Self-sovereign Identity use case, which
was used for the integration and evaluation of PKRS within a
real-world application.

Index Terms—private key recovery, usability, blockchain, iden-
tity management

I. INTRODUCTION

One of the main characteristics of blockchain-based dis-
tributed ledgers is that transactions are irreversible. Once a
validly-signed transaction is on the blockchain, it cannot be
removed. Since such transactions usually represent the transfer
of digital assets or the execution of a smart contract, the loss
of control of the private key can be disastrous. For instance, a
stolen private key of a Bitcoin address can lead to significant
loss of funds. Since an attacker can easily sign fraudulent and
irreversible transactions, it is critical to secure the private key
and avoid any misuse.

Naive solutions that users tend to adopt include the use
of a centralized cloud service. This is a convenient yet not
very secure approach since it depends on the security and
confidentiality of said services.

This work has been partially funded by the Federal Ministry of Education
and Research of Germany (BMBF) under grant no. 16DII111 (“Deutsches
Internet-Institut’).

Kyriakos Stefanidis
Fraunhofer FOKUS
Berlin, Germany
kyriakos.stefanidis @fokus.fraunhofer.de

Fabian Kirstein
Fraunhofer FOKUS
Weizenbaum Institute

Berlin, Germany

fabian kirstein @fokus.fraunhofer.de

A more secure approach is, of course, to encrypt the private
key using a high entropy passphrase and store it on a local,
private machine or a specialized security module. The success
of this approach depends on the user’s capabilities to manage
encryption tools correctly, to keep the passphrase memorized,
and to ensure the long-lasting operation of the hardware. Even
specialized hardware modules can get corrupted taking the
stored private key with them.

We argue that, in certain use cases, it would be ideal to
enjoy the usability and redundancy of storing the private key in
less secure places, such as the cloud services, while avoiding
the risk of losing access to it forever due to a bad case of
forgetfulness.

In this paper, we present a novel approach for securing
a private key based on a combination of Shamir’s Secret
Sharing (SSS) algorithm [[1]] and personal security questions,
that strives to achieve the aforementioned middle ground. We
named our approach the Partial Knowledge Recovery Scheme
(PKRS). We also present the implementation and evaluation
of PKRS as part of a larger blockchain Self-sovereign Identity
(SSI) use case.

The rest of the paper is organized as follows: Section
presents related work on similar schemes, on the usage of
security questions as a form of password reset mechanism and
some related hard problems. Section [[II] presents our approach
and discusses the design of personal security questions. Our
use case is described in section and we conclude the paper
in section [Vl

II. RELATED WORK

Shamir’s Secret Sharing [1f] is a simple yet efficient and
secure algorithm that allows to split any type of information,
usually a secret, into arbitrary parts and be able to recover
it while only having access to a subset of the initial parts.
It is apparent that such a method can be very useful to a
multitude of diverse kinds of problems. In this section, we
briefly investigate solutions that are based on this method and
focus on existing approaches that specifically deal with the
problem of cryptographic key recovery.

The use of Shamir’s secret sharing to the manipulation of
cryptographic keys is not something new and has already been
used in [2] to split and rejoin PGP desktop keys. In various
fields, researchers and companies are leveraging this algorithm

to provide decentralized sharing for their own solutions or
products.

Vault [3] created a crypto-storage platform that leverages
decentralized storage and decentralized cryptography to pro-
vide storage models specifically for owners of crypto-assets.
Their approach harnesses the user’s trusted circles as a mesh
network of mobile devices for distributed storage and, at the
same time, as a method of social verification of each owner’s
identity.

Regarding the problem of searchable encryption, the “serial
interpolation filter” [4] has been developed as a method for
storing and interacting with datasets, without exposing the
original data.

For the general problem of authorization, Ahmadvand et al.
[5] presented a generic architecture based on secret sharing,
aimed to address critical authorization operations. They also
provided benchmarks of different such schemes and analyzed
their trade-offs in security, functionality and performance.

Even in the field of electronic voting, given that there is
a growing interest in leveraging blockchain technology to
provide secure voting solutions, secret sharing can be used
to enable on-chain votes submission, and winning candidate
determination. [0

The aforementioned schemes show that the method of
secret sharing with partial information can be a valuable tool
for a wide range of problems. In the specific problem of
cryptographic key recovery, the only solution that is similar
to ours is the approach taken by Grid+ [7], which is still, to
the day of writing, in its early stages of production. According
to this solution, it is possible to recover any key without the
need of physical backup by utilizing multiple external actors
that hold parts of the key. The actors in that solution are
devices, such as their proprietary agent or the user’s mobile
device as well as an external server. Grid+ solution, while
trying to solve the same problem, is limited to the existence
of specific purpose devices and services. Our approach offers
a more generic solution which only relies on the fundamental
source of information when dealing with passphrases, which
is the user’s brain.

In the topic of security questions as a form of password
or private key reset, it is widely speculated that this method
sacrifices security in favor of an alternative way of recovery.
In fact, security questions are being used by even the more
sensitive services, like web banking, as a form of password
reset and not recovery (for obvious reasons). Since our
approach allows the actual recovery of a key, it is important
to identify whether the use of security questions is a method
that can severely harm the security of the overall solution and
the ways that this can be mitigated.

As shown by Rabkin [8]], the widespread usage of security
questions as a form of password reset mechanism can become
a real threat, since the strength of such questions is based
on the hardness of an information retrieval problem. As
personal information becomes ubiquitously available online,
the strength of security questions diminishes over time. One
interesting result was the fact that there isn’t (to time) enough

evidence to support a widespread exploitation of such a
preceived weakness on the usual targets, like the banking
institutions. The most likely reason is the existence of multiple
layers of auditing before actual money transfers take place,
which makes this kind of attack less appealing than the more
common ones, such as phishing. Clearly, when dealing with
the recovery of blockchain private keys the threat is bigger,
since the compromise of the private key can automatically
mean the transfer of data, knowledge, or wealth.

Similarly, on the topic of the design of “good security
questions”, Jakobsson et al. [9]] argue that there is a solution
to finding suitable questions that should be based on long-
lived personal preferences and knowledge, instead of publicly
available information.

During the design of our approach, the results of both
aforementioned studies, regarding the form and complexity of
security questions, have been taken into account.

III. METHODOLOGY

The main goal of PKRS is to make a private key recoverable
via a set of personal security questions. At first the user is
asked a number of predefined questions and the answers are
used to create a “secured private key”. The original private
key can be recovered once the user is able to answer correctly
only a subset of the original questions.

This scheme tries to offer a trade-off between security, i.e.
having an encrypted form of the original private key that can
be stored safely in lower security environments, and usability,
i.e. being able to recover the original private key after long
periods of time, without the need of long and easily forgotten
passphrases, or hardware security modules.

The core of PKRS is the SSS algorithm that allows to split a
secret into chunks and recover the original secret, given only
a subset of those chunks. In the next sections, we describe
the creation of the secured private key and the recovery of
the original private key, as can be seen in Figure We also
discuss the design principles of the personal security questions,
since they play a vital role in the hardening of the overall
scheme.

A. Creation

Algorithm (1| shows the creation process of the secured pri-
vate key. The required input of the algorithm is the following:
o private_key: The original private key that needs to be
secured.
e questions: An array of strings that has been presented to
the user as personal security questions.
o answers: An array of strings that contains the answers to
the previous questions.
The minimum required number of questions is 3, even though
the actual number of questions should be much higher, as we
will discuss in a later section.
The algorithm initially takes the private key and splits it in
a number of chunks (S[i]) equal to the number of questions.
This is done via the SSS algorithm. Each S[i] is encrypted
with a different key which is the answers (answers[i]) to the

input n number of QnA, n>=3

Sl |»{ Encryet (111 SN] QAT

si2] H Encrypt (AL2], 3[21}|->| {Q[2], AT}

Shamir's Secret

Private Key » Sharing Split
function

sl |_>| Encrypt (AL3], S[31}|->| {QI3],ART

sin] |_>| Encrypt (A, S[n]}|->| {QIn],Alnj}

Split Function

Base64{{Q[] All},.])

Secured Private

input any k number of QnA, k»=3, k<=n

Decrypt (answer[Q11], A[1]}

Decrypt (answer]Q[2]], A[2])

Shamir's Secret

Sharing Combine— Private Key
ing Cor | Private e |

Decrypt (answer]Q3]], A[3])

Key

Decrypt (answer[Qk]], AlK])

Combine Function

Fig. 1. Private Key Recovery Scheme

Algorithm 1: Create(private_key, questions, answers)

Algorithm 2: Recover(sK, answers)

Result: sK: secured private key
Require: questions.count > 3
Require: answers.count == questions.count
. S = SSplitFn(private_key, questions.count)
for i = 0 to S.count do
Ali] = Encrypt(answersli], S[i])
end for
for i =0 to A.count do
SKIi] = {g: Qlil,a : Ali]}
end for
sK = Base64Encode(sK)

R DR R

Result: K: private key
Require: answers.count > 3
1: sK = Base64Decode(sK)

2:7=0

3: for i = 0 to sK.count do

4: if answers[i]l = null then

5: S[i] = Decrypt(answersli], sK|i].a)
6: J++

7. end if

8: end for

9: S = SCombineFn(S)

aforementioned questions resulting in encrypted chunks Al[i].
Finally, it creates an array of tuples that contain each question
and encrypted answer (q:Q[i],a:A[i]) and encodes it in base64
resulting in the secured private key sK.

It should be noted that, in our implementation, we used AES
as the encryption algorithm of step 3, although any symmetric
algorithm can be used if needed.

B. Recovery

Algorithm [2| shows the recovery process of the original pri-
vate key. The required input of the algorithm is the following:

e sK, The secured private key as created by Algorithm
o answers: Any number of k answers to the questions q of
sK.

The minimum required number of k is again 3.

The algorithm initially base64 decodes sK and produces
the array of tuples containing the questions and encrypted
chunks. Then, it iterates through those tuples and, if there is a
given answer to the question of the current tuple, it decrypts
the chunk using the answer as the key. Finally, it passes the
decrypted chunks through the SSS combine function which
produces the original private key.

C. Personal Security Questions Design

By now, it should be obvious that the personal security
questions that will be used in PKRS are a risk factor that
affect the whole scheme.

According to Rabkin [[8]], personal security questions can
suffer from various weaknesses: 1) They can be “inapplicable”
due to the fact that some questions presuppose a certain
state of the user base that do not apply to the subjects (e.x.,
”What is the name of your spouse/husband”). 2) They can
be “not memorable” and have answers that few individuals
can reliably recall (e.x., "What is the middle name of you
kindergarten teacher”). 3) They can be ambiguous in terms of
too many correct answers or in terms of answers that can shift
rapidly over time. 4) They can be “guessable” even without
any knowledge about the subject, merely by social deduction
(e.x. "How old did you marry” considering that a significant
proportion of Europeans marry between 25-35). 4) They can be
attackable via data mining of the subject’s public information.

The last of the aforementioned weaknesses is the most
commonly cited, due to the abundance of publicly available
information one can mine from social networks and public
repositories.

One interesting mitigating approach is the use of questions
that ”are chosen to relate to personal preferences rather than
demonstrated actions and thereby avoid attacks based on data
mining of public data to a large extent” [9]; to design the ques-
tions in such a way that they reflect long-term characteristics
rather than short-term preferences. The goal is to "ask users for
durable information they may not consciously remember and,
are unlikely to have recorded in a public machine-readable
form” [8]].

Moreover, since questions of any short suffer from much

lower entropy than pass-phrases, another mitigating approach
to overcome such inherent weakness is to substantially in-
crease the number of available questions, and require a rela-
tively small portion of correct answers.

Our approach can easily scale in such a manner, simply by
configuring the number of chunks during the creation process
and the number of required answers for a successful recovery.
In the use case we will describe in section we use only
a small amount of questions such as "Name 3 hobbies you
would like to get into if you had the time and money” and
”What do you do to unwind?” as a proof of concept. The full
list of selected security questions can be found in the source
code [1.

Any real world implementation should contain a large pool
of questions, and a threshold of at least 24 correct answers [9]]
required for successful recovery. All those questions should be
designed based on the aforementioned principles.

IV. USE CASES - SELF-SOVEREIGN IDENTITY

In order to test and evaluate the validity of PKRS we have
chosen to integrate it in a larger blockchain use case regarding
digital identities.

The core characteristics of a blockchain are decentralization,
security, immutability, and the absence of a central authority.
Therefore it is widely considered as a technological foundation
for implementing a SSI; a digital identity which is entirely
controlled by its owner, without the need for a central service
or provider. In such a use case, the private key becomes not
only an access token to financial values, but a proof and
representation of an (human) identity. Hence, suitable and
usable recovery mechanisms become even more critical and
relevant.

We have developed a working system for creating and man-
aging SSIs and verifiable claims with the Ethereum blockchain
acting as the primary infrastructure artifact. [| : SeSIS (Self-
sovereign Identity Service) The prototype supports three ma-
jor features, related to identity management: self-registration,
provision, and storage of identity attributes, and third-party
verification of exactly these attributes. Our solution requires
both, on- and off-chain technologies and incorporates different
sub-components and services. The implemented use case is
described in as follows: 1) A user issues an identity by
using an SSI client, which abstracts the interaction with the
Ethereum network and other services. This client could be
locally installed, self-hosted, or offered by a provider. The
user is not required to provide any personal information for
the registration process. The registration process results in
the local creation of a private and public key. 2) The SSI
client interacts via a geth node with the Ethereum network
and deploys an Identity Smart Contract (ISC) for the new
user. The ISC itself represents the digital identity and exposes
methods for adding attributes and corresponding verifications.
In addition, a singleton contract, the Lookup Smart Contract

Uhttps://github.com/blockchain- werkstatt/shamir-library/blob/master/lib/
config/config.js
“https://github.com/blockchain- werkstatt/identity-demo

1
SSI Client : I PDS
I
I
‘ Identity Owner View ‘ Verification View ‘ | : ‘ IPFS ‘
Il
I

|
I
|
I
|
I
‘ PKRS Service ‘ ‘ Hash Service ‘ (! ‘ Cloud ‘ I
|
|
I
I

‘ Faucet Service ‘ ‘

r————"—"~""~""""""""" |
| geth Node I

Ethereum Network

Identity Smart Contract 1 Lookup Smart Contract

Identity Smart Contract n

|
|
|
|
|
|
|
Identity Smart Contract 2 I
|
|
|
|
|

Fig. 2. High-Level Overview of the SSI Prototype

(LSC), is used to link the address of the ISC to the address
of the user. Hence, the LSC can be considered a global user
registry. 3) The user enters personal attributes (e.g. date of
birth or passport ID) through the SSI client. Since Ethereum
is a public Blockchain, no sensitive or individual-related data
is uploaded to the network in plaintext. Only the identifier of
the attribute and a hashed and salted value of it are stored. For
the actual data storage an encrypted Personal Data Store (PDS)
(local or in the cloud) can be employed. 4) A verification
authority (e.g. public administration) checks the claim of a
user by applying the same hash function to the value of the
attribute. A positive verification by the authority is indicated
via the ISC.

Our system implements a clear and meaningful use case
for applying blockchain technology. However, we consider
the technical handling of the private key a dealbreaker in
successfully disseminating this use case. Average users do
struggle with the management of the private key, whether it is
a seed phrase, a hardware token, or a key file. To foster the
awareness and practical adoption of a SSI, and avoid falling
back to centrally managed workarounds, we applied PKRS
as the primary authentication mechanism of our system. This
profoundly lowers the entry barrier and increases the users
confidence in dealing with the system.

As the user registers in step 1 of the workflow, they are
presented with a wizard, asking the personal security ques-
tions. The answers are not stored or transferred, but only used
as part of the PKRS process. After answering the questions,
the secured private key (sK) is generated and presented to the
user. The sK also needs to be stored, but this can be done
in a less secure way, e.g., a cloud provider, hard drive etc.

https://github.com/blockchain-werkstatt/shamir-library/blob/master/lib/config/config.js
https://github.com/blockchain-werkstatt/shamir-library/blob/master/lib/config/config.js
https://github.com/blockchain-werkstatt/identity-demo

In order to recover the access to the identity, the user has
to provide the sK and correctly answer at least three of the
personal questions.

We implemented the entire system and the described fea-
tures to evaluate its feasibility. Fig. [2] shows an overview of
the main modules and artifacts. The SSI client is written in
JavaScript and employs the Vue.js frameworkE] as the principal
framework. As a PDS the InterPlanetary File System (IPFSﬂ
can be used as dummy stand-in. A dedicated service is
responsible to provide the users with required funds for in-
teracting with the network (Faucet Service). For development
and evaluation we are applying Ganache, a personal and local
version of the Ethereum blockchainFl

The use case implementation demonstrates how the PKRS
approach can be successfully integrated into a real-world
blockchain application and how the registration and recovery
processes is performed.

V. CONCLUSIONS

In this paper we have presented and evaluated our Partial
Knowledge Recovery Scheme (PKRS) for securing and re-
covering a private key based on personal security questions.
In PKRS, the users have to provide answers to a set of
predefined personal security questions, which are used to
encrypt the private key. A subset of the answers to these
questions, and a generated secured private key, is required to
recover the original private key. The design of the personal
security questions follows best practices, to be sufficiently
secure, answerable only by the user, and easy to remember.
Our underlying algorithm is based on Shamir’s Secret Sharing
(SSS) and uses AES for symmetric encryption operations. We
have successfully implemented the approach and integrated it
into a blockchain use case for creating and managing self-
sovereign identities. This enables the users to a much more
usable login and recovery process than established schemes,
like securing the private key or a mnemonic directly.

We positioned our solution and use case within Zooko’s
triangle [10] strongly on the sides human meaningful and
decentralized. In addition, we aimed for the highest possible
security within our scope of applying personal security ques-
tions as the means for authentication. As a result, our system
offers a more natural and approachable process to the users.

The dissemination and adoption of blockchain applications
is impeded by usability issues, essentially regarding the man-
agement of the underlying PKI infrastructure. Our solution,
with an increased usability, has the potential to attract more
users, lower the barriers, and create momentum for a broader
application of blockchain and its potentials. A compromise
in security is justifiable in the light of this broader objective.
In addition, the security measures should fit the purpose. Our
solution is suitable for use cases where transaction values are
low to medium.

3https://vuejs.org/
4https://ipfs.io/
Shttps://github.com/trufflesuite/ganache-cli

Our work is available as Open Source, and the Partial
Knowledge Recovery Scheme (PKRS) can be integrated via
an NPM package. E]

VI. OUTLOOK

Our solution could be applied to a variety of use cases, espe-
cially in the context of blockchain. Basically, every blockchain
application requires authentication, which is based on private
keys. Our next step is to identify an established and suitable
blockchain application and integrate our approach for in-depth
analysis. This includes an extensive user study to measure
the actual acceptance, and, improve the personal security
questions.

In addition, our approach can be applied to secure data
sharing beyond blockchain. We will identify additional use
cases where the security level of PKRS is appropriate.

REFERENCES

[1] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979.

[2] Symantec, “How to: Split and rejoin pgp desktop 8.x keys,” https:/
support.symantec.com/us/en/article.howto41916.html, Feb. 2012.

[3] M. Skibinsky, Y. Dodis, T. Spies, and W. Ahmad, “Decentralized storage
of crypto assets via hierarchical shamir’s secret sharing,” https://github.
com/vault]2/whitepapers, Jan. 2018.

[4] D. Zage, H. Xu, T. M. Kroeger, B. Hahn, N. Donoghue, and T. R.
Benson, “Secure distributed membership tests via secret sharing: How
to hide your hostile hosts: Harnessing shamir secret sharing,” 2016 In-
ternational Conference on Computing, Networking and Communications
(ICNC), pp. 1-6, 2015.

[5] M. Ahmadvand., A. Scemama., M. Ochoa., and A. Pretschner., “Enhanc-
ing operation security using secret sharing,” in Proceedings of the 13th
International Joint Conference on e-Business and Telecommunications -
Volume 4: SECRYPT, (ICETE 2016), INSTICC. SciTePress, 2016, pp.
446-451.

[6] S. Bartolucci, P. Bernat, and D. Joseph, “Sharvot: Secret share-based vot-
ing on the blockchain,” in 2018 IEEE/ACM 1Ist International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB),
May 2018, pp. 30-34.

[7]1 A. Miller, “Simple Security with Shamir Secret Sharing,” https://blog.
gridplus.io/simple-security- with-shamir-secret-sharing- 15704 166b8be,
Aug. 2017.

[8] A. Rabkin, “Personal knowledge questions for fallback authentication:
Security questions in the era of facebook,” in Proceedings of the
4th Symposium on Usable Privacy and Security, ser. SOUPS ’08.
New York, NY, USA: ACM, 2008, pp. 13-23. [Online]. Available:
http://doi.acm.org/10.1145/1408664.1408667

[91 M. Jakobsson, E. Stolterman, S. Wetzel, and L. Yang, “Love

and authentication,” in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, ser. CHI ’08. New

York, NY, USA: ACM, 2008, pp. 197-200. [Online]. Available:

http://doi.acm.org/10.1145/1357054.1357087

Z. Wilcox-O’Hearn, “Names: Distributed, Secure, Human-Readable:

Choose ~ Two,” https://web.archive.org/web/20011020191610/http:

//zooko.com/distnames.html, Nov. 2019.

[10]

Shttps://www.npmjs.com/package/secretkeysharing

https://vuejs.org/
https://ipfs.io/
https://github.com/trufflesuite/ganache-cli
https://support.symantec.com/us/en/article.howto41916.html
https://support.symantec.com/us/en/article.howto41916.html
https://github.com/vault12/whitepapers
https://github.com/vault12/whitepapers
https://blog.gridplus.io/simple-security-with-shamir-secret-sharing-15704166b8be
https://blog.gridplus.io/simple-security-with-shamir-secret-sharing-15704166b8be
http://doi.acm.org/10.1145/1408664.1408667
http://doi.acm.org/10.1145/1357054.1357087
https://web.archive.org/web/20011020191610/ http://zooko.com/distnames.html
https://web.archive.org/web/20011020191610/ http://zooko.com/distnames.html
https://www.npmjs.com/package/secretkeysharing

	Introduction
	Related Work
	Methodology
	Creation
	Recovery
	Personal Security Questions Design

	Use Cases - Self-sovereign Identity
	Conclusions
	Outlook
	References

